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SUMMARY 

The resolution of mandelic acid derivatives (differing in the kind of functional 
group and in the position of its substitution in the aromatic ring) into enantiomers 
in a reversed-phase high-performance liquid chromatographic system via c(- and p- 
cyclodextrin inclusion complexes was studied. Of the mandelic acid derivatives in- 
vestigated (o-, m- and p-OH, o-CHs, o-0CH3, o- and m-Cl), only the chloro deriv- 
atives showed high enantioselectivity in the processes of complex formation with fl- 
cyclodextrin (separation factors: CY,_~~ = 1.8 at pH 2.1 and c1,~~ = 1.15 and CLCI 

= 1.15 at pH 6.8). In contrast, the enantioselectivity for complex formation between 
a-cyclodextrin and mandelic acid and the derivatives investigated was low. 

INTRODUCTION 

Cyclodextrins (CDs) are toridal-shaped cyclic oligosaccharides made up of c1- 
1,Clinked D-glucopyranose units. They exhibit a high stereoselective ability to form 
inclusion compounds with a variety of molecules and ions. Attempts to take advan- 
tage of this phenomenon in gas and liquid chromatography have been made, with 
interesting results’,*. 

We have recently applied /I-cyclodextrin as the mobile phase component for 
resolution, in reversed-phase chromatographic systems, of racemic mandelic acid3 
and some of its derivatives with various substituents in the side-chain4. We have 
found that the enantioselectivity arising from inclusion in B-CD molecules was sub- 
stantial only for compounds containing, at the chiral carbon atom, an intact car- 
boxylic group and another polar group (e.g., OH, NH2) able to form a hydrogen 
bond. It was additionally assumed that the insertion of a phenyl group in the central 
cavity of P-CD provides the third point of contact, indispensable for achieving en- 
antioselectivity in a chromatographic system, according to the ‘three points of at- 
tachment” concept of Dalgliesh5. 

This work was designed to provide further experimental evidence for the sug- 
gested third point of contact, and to elucidate the relationship between enantioselec- 
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tivity and the structure of the inclusion complexes. For these purposes systematic 
studies on the resolution of mandelic acid derivatives (differing in the kind of func- 
tional group and in the position of its substitution in the aromatic ring) into enan- 
tiomers were carried out. 

EXPERIMENTAL 

Reagents 
a- and P-CD were supplied by Chinoin (Budapest, Hungary). Racemic o-, m- 

and p-hydroxy-, o- and m-chloro-, o-methyl- and o-methoxymandelic acids were pre- 
pared according to the general procedure described earlier’j. Resolution of racemic 
o- and m-chloromandelic acids was carried out by the standard procedure with op- 
tically acvtive a-phenylethylamine as the resolving agent’. All other materials were 
of analytical- or laboratory-reagent grade, and were used without further purifica- 
tion. 

Apparatus and procedure 
Chromatographic experiments were performed using a high-performance 

liquid chromatographic (HPLC) unit constructed at the Institute of Physical Chem- 
istry, Polish Academy of Sciences, Warsaw, Poland, equipped with a spectrophoto- 
metric detector (254 nm) having a Z-shaped passage (volume 8 ~1). Use was made of 
stainless-steel columns (250 x 4.5 or 50 x 4.5 mm I.D.), slurry-packed at 435 kg/cm2 
by the balanced density technique (IO-pm LiChrosorb RP-18; E. Merck, Darmstadt, 
F.R.G.). All measurements were carried out at 25°C. The mobile phases consisted of 
aqueous solutions containing various concentrations of OL- and P-CD and suitable 
buffer components. 

As the resolution of racemic mandelic acid derivatives into enantiomers is very 
time consuming, the following simplified procedure was applied: 

(1) preliminary evaluation of enantioselectivity by comparing chromatograms 
of the racemate of a given mandelic acid derivative with chromatograms of racemic 
mandelic acid itself, obtained under the same conditions; 

(2) resolution into enantiomers of racemates of some compounds of interest; 
(3) systematic investigations of retention with the use of enantiomeric forms 

of the above-mentioned compounds. 

RESULTS AND DISCUSSION 

The capacity ratio (k’) and selectivity factors (a), determined in mobile phase 
solutions containing various Q- or P-CD concentrations at two different pH values, 
are given in Tables I and II. 

In the systems used, the equilibria of the investigated mandelic acid derivatives 
are complicated because: 

(1) for each mandelic acid derivative, in the mobile phase solution, on the 
assumption that only complexes with 1: 1 stoichiometry are formed, there are at least 
two inclusion complexes with different stabilities, formed by the neutral (MH) and 
anionic (M-) species: 
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MH + CD s MH . CD; K” = 
[MH . CD] 

WHI [CD1 

M- + CD s (M . CD)-; K- = “,&;“br’ 

TABLE I 

CAPACITY RATIOS (k’) AND SELECTIVITY FACTORS (1) OF MANDELIC ACID AND ITS 
DERIVATIVES AT DIFFERENT /KYCLODEXTRIN CONCENTRATIONS AND AT TWO DIF- 
FERENT pH VALUES OF THE MOBILE PHASE SOLUTIONS 

Compound Parameter 

Mandelic acid k’(+) 
k’(-) 
k’t*) 

k’C+j 
g=k’(-) 

p-Hydroxy- 
mandelic acid 

m-liydroxy- 
mandelic acid 

o-Hydroxy- 
mandelic acid 

o-Methyl- 
mandelic acid 

o-hlethoxy- 
mandelic acid 

o-Chloro- 
mandelic acid 

m-Chloro- 
mandelic acid 

k’(+) 
k’(-) 

k’(+) 
I=-- _ 

k’(F) 

k’(k) 
CL* 

k’(+) 
c(* 

k’(i) 
‘2 

k’(i) 
ci* 

k’(+) 
k’(F) 
k’(+) 

k’(F) 
cI = k’(+) 

k’(+) 
k’(F) 
k’(h) 

k’(E) 
r= ~~~ 

k’(+) 

pH 2.1 pH 6.8 

0.0 0.0 

15.0 
15.0 
15.0 

1.00 

4.7 14.4 

1.71 4.88 

7.13 4.52 

7.45 4.70 
1.09 1.08 

4.7 14.4 
- 

0.87 0.75 

0.86 0.74 
0.87 0.75 
1.01 1.01 

1.05 
1.05 
1.05 
1 .oo 

4.60 
4.60 

1.00 

1.30 0.80 0.56 0.51 

1.30 0.80 0.56 0.51 

1 .oo 1 .oo 1.00 1.00 

0.90 
0.90 

1.00 

8.30 
1 .oo 

1.50 
1 .oo 

15.5 

1.00 
12.75 

1.00 

36.05 
1.00 

2.40 
1.00 

2.40 1.40 0.86 0.75 

< 1.09 < 1.08 

7.40 4.60 5.60 3.50 

< 1.09 < 1.08 

15.05 10.24 1.50 1.14 

< 1.09 i 1.08 

10.02 7.05 0.94 0.65 
< 1.09 i 1.08 

119 20.9 11.35 
210 21.7 13.03 

21.3 
1.8 1.04 1.15 

24.2 

1.00 

2.20 
1.00 

55 
55 

55 

1 .oo 

165 49.4 
165 56.6 
165 64.8 

I .oo 1.15 

* This value was evaluated from a comparison with the pattern of the resolution of racemic man- 
delic acid under the same conditions. 
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TABLE II 

CAPACITY RATIOS (k’) AND SELECTIVITY FACTORS (z) OF MANDELIC ACID AND ITS 
DERIVATIVES AT DIFFERENT c(-CYCLODEXTRIN CONCENTRATIONS AND AT TWO DIF- 

FERENT pH VALUES OF THE MOBILE PHASE SOLUTIONS 

Compound Parameter (r-CD] iA4 x IF31 

Mandelic acid 

p-Hydroxy- 

mandelic acid 

m-Hydroxy- 
mandelic acid 

6.15 

1.00 

o-Hydroxy- k’(*) 12.8 
mandelic acid z 1 .oo 

o-Methyl- k’(*) 36.05 
mandelic acid 1 1.00 

o-Methoxy- k’(*) 24.2 
mandelic acid I 1.00 

o-Chloro- 

mandelic acid 
k’(+) 
k’(*) 

@(+I 
“=k’o 

pH 2.1 pH 6.8 

0.0 5.0 10.0 0.0 10.0 

k’(+) 
k’(C) 

k’(+) 
I=_- 

k’(F) 

k’(+) 
e-1 

k’(+) 
z = k'(-) 

15.0 
15.0 
1.00 

3.05 
3.05 
1 .oo 

6.48 
6.43 
1.01 

1.00 
1 .oo 

1 .oo 

2.38 

5.12 

19.8 

11.9 

4.87 1.05 
4.81 1.05 
1.01 1 .oo 

0.73 0.50 
0.73 0.50 
1.00 1 .oo 

1.79 1.5 

1.00 

4.25 10.6 

13.2 2.4 

1 .oo 

7.81 2.2 
1.00 

55 

55 

1.00 

0.36 
0.35 
1.02 

0.15 

0.15 
1.00 

0.23 

1.08 

0.58 

0.45 

7.02 
7.02 

1.00 

(2) each of the at least four species [MH, M-, MH . CD, (M . CD)-] is char- 
acterized by specific adsorption on the reversed phase [&n, kM-, kbH cb 

k;M m-1. 
Hence the measured overall capacity ratios are complex functions of pH and 

CD concentration@. 
The data in Tables I and II lead to the following conclusions. In acidic solu- 

tions (pH 2.1), substituted mandelic acids (o-, m- and p-OH, o-Me, o-OMe), com- 
pared with mandelic acid itself, exhibited lower enantioselectivity of B-CD complex 
formation (SI < 1.08). Probably the observed drop in enantioselectivity arose from 
changes in the geometric requirements of the insertion of differently substituted aro- 
matic rings into the B-CD cavity. Surprisingly, with chloro-substituted mandelic acid, 
a strong opposite effect was observed, i.e. the enantioselectivity of P-CD complex 
formation was very high (a = 1.8 for o-chloromandelic acid). It is stressed that the 
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Fig. 1. Elution curve of racemic o-chloromandelic acid with an aqueous mobile phase of pH 2.1 and [/I- 
CD] = 14.4 LOP3 M. Column, 50 x 4.5 mm I.D., LiChrosorb RP-18 (10 pm); flow-rate, 2.4 mljmin. 
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Fig. 2. Elution curve of a racemic mixture of o- and m-chloromandelic acids with an aqueous mobile 
phase of pH 6.8 and [P-CD] = 14.4 10~3 M. Column: 250 x 4.5 mm I.D., LiChrosorb RP-18 (10 pm); 
flow-rate. 1.2 ml’min. 



88 J. DEBOWSKI. J. JLJRCZAK, D. SYBILSKA 

separation of racemic o-chloromandelic acid presented in Fig. 1 was performed on 
a column only 5 cm long. 

In the pH region corresponding to almost complete dissociation of the inves- 
tigated acids (in this work pH 6.8), characterized by predominant participation of 
anions in the determination of the k’ and r values, o- and m-chloromandelic acids in 
comparison with mandelic acid itself exhibited in the B-CD solutions a considerable 
increase in enantioselectivity (Fig. 2). This increase varied from a z 1 .Ol for mandelic 
acid to r = 1.15 for its o- and m-chloro derivatives; the enantioselectivity was nearly 
the same for both chloro-substituted mandelic acids. 

According to the equation of Uekama et ~l.~, and assuming that under the 
experimental conditions used here the active surface area of the reversed phase did 
not change with changes in P-CD concentration, we found that only 1: 1 complexes 
were formed in the mobile phase solution. 

The remarkable enantioselectivity observed for mandelic acid and for its o- 
chloro derivative at pH 2.1 in B-CD solutions, arising from differences in the stability 
constants [Kr+, and Kr-,] and in the capacity factors [k;+jMH CD and kiplMH . CD], 
was only observed for Z-CD solution (X z 1.02). A similar behaviour of r-CD, i.e., 
a lack of enantioselectivity, was observed for o- and m-chloromandelic acids at pH 
6.8. For mandelic acid and the derivatives investigated, P-CD seems to be a much 
more effective chiral host than I-CD. 

Although these findings are of practical interest, they are very hard to interpret 
theoretically. Further studies on the inclusion of mandelic acid derivatives into p- 
CD, with other substituted guest molecules, are in progress. 
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